18 research outputs found

    Miniature photonic-crystal hydrophone optimized for ocean acoustics

    Full text link
    This work reports on an optical hydrophone that is insensitive to hydrostatic pressure, yet capable of measuring acoustic pressures as low as the background noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal reflector interrogated with a single-mode fiber, and is compatible with existing fiber-optic technologies. Three sensors with different acoustic power ranges placed within a sub-wavelength sized hydrophone head allow a high dynamic range in the excess of 160 dB with a low harmonic distortion of better than -30 dB. A method for suppressing cross coupling between sensors in the same hydrophone head is also proposed. A prototype was fabricated, assembled, and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating a minimum detectable pressure down to 12 {\mu}Pa (1-Hz noise bandwidth), a flatband wider than 10 kHz, and very low distortion

    Linearly polarized, 3.35 W narrow-linewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow

    Get PDF
    A high-power linearly polarized Yb-doped silica fiber master oscillator power amplifier at 1150 nm is reported. It produced 3.35 W cw and 2.33 W of average power in 1 s pulses at a 100 kHz repetition rate, both with 8 pm linewidth. This is the first report, to the best of our knowledge, of a high-power Yb-doped fiber amplifier at a wavelength longer than 1135 nm. The pulsed output was frequency doubled in a bulk periodically poled near-stoichiometric LiTaO 3 chip to generate 976 mW of average power at 575 nm with an overall system optical-to-optical efficiency of 9.8% with respect to launched pump power

    Rare-earth-doped fiber lasers and amplifiers / edited by Michel J.F. Digonnet.

    No full text
    Includes bibliographical references and index.xii, 777 pages :Offers a discussion of the theories, operating characteristics, and technology of main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. This title describes the principles, designs, and properties of the erbium-doped fiber amplifier

    Spring-Loaded Diaphragm-Based Fiber Acoustic Sensor

    No full text

    Model of Anti-Stokes Fluorescence Cooling in a Single-Mode Optical Fiber

    No full text
    We report a comprehensive model that quantifies analytically and numerically the heat that can be extracted by anti-Stokes fluorescence (ASF) from a fiber doped with a quasi-two-level laser ion. This model is used to investigate the effects on cooling of all relevant fiber and pump parameters, as well as amplified spontaneous emission. Simulations of a typical Yb-doped ZBLANP single-mode fiber show that for short enough fibers the heat extraction is relatively uniform along the fiber length. There is an optimum pump wavelength and power that maximizes the heat extracted per unit length. At this power, the coolest point is at the fiber input end. At higher powers, the coolest spot moves further down the fiber. The total heat extracted from a fiber, important for payload cooling, depends on the fiber absorptive loss, the pump wavelength, and the pump power. Simple expressions are derived to predict the optimum dopant concentration that maximizes heat extraction and the maximum tolerable absorptive fiber loss above which cooling is unobtainable. In a fiber with negligible residual absorption, the cooling efficiency is predicted to be 3.7%. In the modeled fiber, it is reduced to 1.7% in part by concentration quenching, but mainly due to the fiber absorptive loss (∼15 dB/km). Since the total extracted heat increases linearly with core radius and dopant concentration (up to a limit determined by concentration quenching), highly doped multimode fibers are strong candidates for payload cooling. This model can be straightforwardly expanded to design and optimize fiber lasers and amplifiers that utilize ASF for cooling

    Model of Anti-Stokes Cooling in a Yb-Doped Fiber

    No full text
    We use a comprehensive model of cooling by anti-Stokes fluorescence in a single-mode fiber that includes the effects of fiber loss, concentration quenching, mode profiles, and amplified spontaneous emission to analyze the trends of cooling in single-mode Yb-doped ZBLANP fibers. Simulations demonstrate that heat extraction varies significantly along the fiber. There is an optimum pump power (58 mW at 1015 nm for the modeled fiber) for which the maximum heat extracted per unit length is at the start of the fiber. Launching more power moves the coolest point further down the fiber. At substantially higher powers, ASE has a significant heating effect, and coupled with the heating due to absorptive loss, the entire fiber warms up. For a given fiber length, the total extracted heat is maximized for a different pump power (430 mW for a 20-m length). The temperature change is then negative along the entire fiber, and the total extracted heat is 7.12 mW (1.65% cooling efficiency). When the fiber absorptive loss is negligible, this value increases to 30.5 mW for a 2-W pump, giving a 3.48% cooling efficiency, only slightly below the quantum limit (3.7%). The optimum dopant concentration has a similar trade-off: The total extracted heat is maximized for a Yb concentration of 2 wt.%, and the cooling efficiency for 0.5 wt.%. A model of ASF cooling in fiber lasers is also described and exploited to investigate how to select the fiber laser parameters to extract the most power output from a radiation-balanced fiber laser. It shows that increasing the cavity length increases cooling at the expense of laser efficiency, and that a low output coupler reflectivity enhances ASF cooling. Simulations predict that a large-mode-area fiber laser should produce 12.7 W of output power at 63% efficiency, a performance limited by the fiber\u27s absorptive loss, the core diameter (30 µm), and concentration quenching

    High-Resolution Slow-Light Fiber Bragg Grating Temperature Sensor with Phase-Sensitive Detection

    No full text
    This Letter reports a slow-light fiber Bragg grating (FBG) temperature sensor with a record temperature resolution of ~0.3 m°C √Hz, a drift of only ~1 m°C over the typical duration of a measurement (~30 s), and negligible self-heating. This sensor is particularly useful for applications requiring the detection of very small temperature changes, such as radiation-balanced lasers and the measurement of small absorptive losses using calorimetry. The sensor performance is demonstrated by measuring the heat generated in a pumped Yb-doped fiber. The sensor is also used to measure the slow-light FBG\u27s very weak internal absorption loss (0.02m-1), which is found to be only ~2% of the total loss

    Quasi‐cw pumping of a single‐frequency fiber amplifier for efficient shg in ppln crystals with reduced thermal load

    No full text
    Single‐frequency lasers are essential for high‐resolution spectroscopy and sensing applications as they combine high‐frequency stability with low noise and high output power stability. For many of these applications, there is increasing interest in power‐scaling single‐frequency sources, both in the near‐infrared and visible spectral range. We report the second‐harmonic generation of 670 μJ at 532 nm of a single‐frequency fiber amplifier signal operating in the quasi‐continuous‐wave mode in a 10‐mm periodically poled Mg‐doped lithium niobate (MgO:PPLN) crystal, while increasing compactness. To the best of our knowledge, this is the highest pulse energy generated in this crystal, which may find applications in the visible and UV such as remote Raman spectroscopy.
    corecore